202 research outputs found

    Novel Mutation in the Apob Gene (Apo B-15.56): A Case Report

    Get PDF
    Novel Mutation in the Apob Gene (Apo B-15.56): A Case ReportFamilial hypobetalipoproteinemia (FHBL) is a rare co-dominant genetic disorder characterized by decrease of plasma low density lipoprotein-cholesterol (LDL-c) or apolipoprotein B (Apo-B) equal to or less than the 5th percentile for the population. We describe a 48-year-old male who presented with fatty liver disease (FLD), insulin resistance (IR), obesity and hypertension. Our patient thus met the latest diagnostic criteria of the metabolic syndrome (MS) proposed by the Adult Treatment Panel and the International Diabetes Federation. However, he had very low plasma concentration of LDL-c and Apo-B. DNA sequencing showed that he and two first-degree relatives affected by obesity and mild IR were heterozygous for a single nucleotide deletion on exon 15 of the APOB gene, which was predicted to form a truncated Apo-B designated Apo B-15.56

    Familial hypercholesterolemia: The Italian Atherosclerosis Society Network (LIPIGEN)

    Get PDF
    Primary dyslipidemias are a heterogeneous group of disorders characterized by abnormal levels of circulating lipoproteins. Among them, familial hypercholesterolemia is the most common lipid disorder that predisposes for premature cardiovascular disease. We set up an Italian nationwide network aimed at facilitating the clinical and genetic diagnosis of genetic dyslipidemias named LIPIGEN (LIpid TransPort Disorders Italian GEnetic Network)

    Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia

    Get PDF
    Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and Results An lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score ≥1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score ≥1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level ≥190 mg/dL (or from 68% to 50%, considering a more conservative formula). Conclusions Our study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH

    Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study

    Get PDF
    Background and aims: Familial hypercholesterolemia (FH) is an inherited disorder characterized by high levels of blood cholesterol from birth and premature coronary heart disease. Thus, the identification of FH patients is crucial to prevent or delay the onset of cardiovascular events, and the availability of a tool helping with the diagnosis in the setting of general medicine is essential to improve FH patient identification.Methods: This study evaluated the performance of the Dutch Lipid Clinic Network (DLCN) score in FH patients enrolled in the LIPIGEN study, an Italian integrated network aimed at improving the identification of patients with genetic dyslipidaemias, including FH.Results: The DLCN score was applied on a sample of 1377 adults (mean age 42.9 +/- 14.2 years) with genetic diagnosis of FH, resulting in 28.5% of the sample classified as probable FH and 37.9% as classified definite FH. Among these subjects, 43.4% had at least one missing data out of 8, and about 10.0% had 4 missing data or more. When analyzed based on the type of missing data, a higher percentage of subjects with at least 1 missing data in the clinical history or physical examination was classified as possible FH (DLCN score 3-5). We also found that using real or estimated pre-treatment LDL-C levels may significantly modify the DLCN score.Conclusions: Although the DLCN score is a useful tool for physicians in the diagnosis of FH, it may be limited by the complexity to retrieve all the essential information, suggesting a crucial role of the clinical judgement in the identification of FH subjects

    Hepatic steatosis does not cause insulin resistance in people with familial hypobetalipoproteinaemia

    Get PDF
    Item does not contain fulltextAIMS/HYPOTHESIS: Hepatic steatosis is strongly associated with hepatic and whole-body insulin resistance. It has proved difficult to determine whether hepatic steatosis itself is a direct cause of insulin resistance. In patients with familial hypobetalipoproteinaemia (FHBL), hepatic steatosis is a direct consequence of impaired hepatic VLDL excretion, independently of metabolic derangements. Thus, patients with FHBL provide a unique opportunity to investigate the relation between increased liver fat and insulin sensitivity. METHODS: We included seven male participants with FHBL and seven healthy matched controls. Intrahepatic triacylglycerol content and intramyocellular lipid content were measured using localised proton magnetic resonance spectroscopy ((1)H-MRS). A two-step hyperinsulinaemic-euglycaemic clamp, using stable isotopes, was assessed to determine hepatic and peripheral insulin sensitivity. RESULTS: (1)H-MRS showed moderate to severe hepatic steatosis in patients with FHBL. Basal endogenous glucose production (EGP) and glucose levels did not differ between the two groups, whereas insulin levels tended to be higher in patients compared with controls. Insulin-mediated suppression of EGP during lower dose insulin infusion and insulin-mediated peripheral glucose uptake during higher dose insulin infusion were comparable between FHBL participants and controls. Baseline fatty acids and lipolysis (glycerol turnover) at baseline and during the clamp did not differ between groups. CONCLUSIONS/INTERPRETATION: In spite of moderate to severe hepatic steatosis, people with FHBL do not display a reduction in hepatic or peripheral insulin sensitivity compared with healthy matched controls. These results indicate that hepatic steatosis per se is not a causal factor leading to insulin resistance. TRIAL REGISTRATION: ISRCTN35161775

    Exome Sequencing in Suspected Monogenic Dyslipidemias

    Get PDF
    Abstract BACKGROUND: -Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We utilized this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. METHODS AND RESULTS: -We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual in order to account for their burden of common genetic variants known to influence lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. CONCLUSIONS: -We identified the genetic basis of disease in nine of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies

    Lipoprotein(a) Genotype Influences the Clinical Diagnosis of Familial Hypercholesterolemia

    Get PDF
    Background Evidence suggests that LPA risk genotypes are a possible contributor to the clinical diagnosis of familial hypercholesterolemia (FH). This study aimed at determining the prevalence of LPA risk variants in adult individuals with FH enrolled in the Italian LIPIGEN (Lipid Transport Disorders Italian Genetic Network) study, with (FH/M+) or without (FH/M-) a causative genetic variant. Methods and ResultsAn lp(a) [lipoprotein(a)] genetic score was calculated by summing the number risk-increasing alleles inherited at rs3798220 and rs10455872 variants. Overall, in the 4.6% of 1695 patients with clinically diagnosed FH, the phenotype was not explained by a monogenic or polygenic cause but by genotype associated with high lp(a) levels. Among 765 subjects with FH/M- and 930 subjects with FH/M+, 133 (17.4%) and 95 (10.2%) were characterized by 1 copy of either rs10455872 or rs3798220 or 2 copies of either rs10455872 or rs3798220 (lp(a) score >= 1). Subjects with FH/M- also had lower mean levels of pretreatment low-density lipoprotein cholesterol than individuals with FH/M+ (t test for difference in means between FH/M- and FH/M+ groups <0.0001); however, subjects with FH/M- and lp(a) score >= 1 had higher mean (SD) pretreatment low-density lipoprotein cholesterol levels (223.47 [50.40] mg/dL) compared with subjects with FH/M- and lp(a) score=0 (219.38 [54.54] mg/dL for), although not statistically significant. The adjustment of low-density lipoprotein cholesterol levels based on lp(a) concentration reduced from 68% to 42% the proportion of subjects with low-density lipoprotein cholesterol level >= 190 mg/dL (or from 68% to 50%, considering a more conservative formula). ConclusionsOur study supports the importance of measuring lp(a) to perform the diagnosis of FH appropriately and to exclude that the observed phenotype is driven by elevated levels of lp(a) before performing the genetic test for FH

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age. Methods: From the Italian LIPIGEN cohort, we selected 1188 (≥18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation. Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives. Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age
    • …
    corecore